福林制衣厂现有24名制作服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件和裤子5条.
(1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人?
(2)已知制作一件衬衫可获利30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于550元,则至少安排多少名工人制作衬衫?
网友回答
解:设制作衬衫的人为x人,制作裤子的人为y人.
可得方程组
解得
答:制作衬衫的人为15人,制作裤子的人为9人.
(2)设安排a人制作衬衫,则a人制作裤子,依题意有
30×3a+16×5×a≥550,
解得a≥.
∵a为正整数,
∴a最小为4.
答:至少安排4名工人制作衬衫.
解析分析:(1)设安排x人制作衬衫,安排y人制作裤子.由关键语句“现有24名制作服装的工人”和“每天制作的衬衫和裤子数量相等”,可得到等量关系.
(2)设安排a人制作衬衫,则a人制作裤子,根据该厂要求每天获得利润不少于550元可列一元一次不等式求解即可.
点评:考查了二元一次方程组的应用,一元一次不等式的应用.该例中每人每天生产的衬衫或裤子的数目不变,每件衬衫或裤子的利润也不变,这是解题的关键.