如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB、DF⊥AC,垂足为E、F,求证:EB=FC.
网友回答
证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°,
在Rt△BED和Rt△DFC中,
,
∴Rt△BED≌Rt△CFD(HL),
∴EB=FC.
解析分析:首先由角平分线的性质可得DE=DF,又有BD=CD,可证Rt△BED≌Rt△DFC(HL),即可得出EB=FC.
点评:此题主要考查角平分线的性质和全等三角形的判定和性质,难度不大.