如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D.(1)求证:AD平分∠BAC;(2)若AD=,AE=4,求图中阴影部分的面

发布时间:2020-08-07 10:22:44

如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D.
(1)求证:AD平分∠BAC;
(2)若AD=,AE=4,求图中阴影部分的面积.

网友回答

(1)证明:连接OD,则OA=OD,
∴∠DAO=∠ODA.
∵BC是⊙O的切线,
∴OD⊥BC,
∵∠C=90°,
即AC⊥BC,
∴OD∥AC,
∴∠CAD=∠ODA,
∴∠DAO=∠CAD,
∴AD平分∠BAC;

(2)解:连接ED,
∵AE为直径,
∴∠ADE=∠C=90°,
∵DE2=AE2-AD2=4,
∴DE=2,
在Rt△ADE中,∵AE=4,AD=2,
∴DE=2,
∴∠DAE=30°,∠AOD=120°,
∴S△AOD=S△ADE=×AD?DE=××2×2=,
∵S扇形AOD==π,
∴S阴影=S扇形AOD-S△AOD=π-.
解析分析:(1)首先连接OD,由⊙O与BC相切于点D,在Rt△ABC中,∠C=90°,易证得OD∥AC,又由OA=OD,则可证得AD平分∠BAC;
(2)首先连接DE,由AE为直径,易得∠ADE=90°,然后由勾股定理,求得DE的长,继而求得AD的长,然后由S阴影=S扇形AOD-S△AOD求得
以上问题属网友观点,不代表本站立场,仅供参考!