如图所示,P是正三角形ABC内一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为( ) A. 4B. 8C. 10D. 6
网友回答
如图所示,P是正三角形ABC内一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为( ) A. 4B. 8C. 10D. 6(图2)连接PP′,由旋转的性质可知,P′A=PA=6,∠BAP'=∠CAP,
∵∠BAP=∠BAP,
故可得:∠P′AP=∠BAC=60°,
∴△P′AP为等边三角形,
∴P′P=PA=6.
故选D.======以下答案可供参考======
供参考答案1:
(1)连接PP′,由题意可知BP′=PC=10,AP′=AP,
∠PAC=∠P′AB,而∠PAC+∠BAP=60°,
所以∠PAP′=60度.故△APP′为等边三角形,
所以PP′=AP=AP′=6;
(2)利用勾股定理的逆定理可知:
PP′2+BP2=BP′2,所以△BPP′为直角三角形,且∠BPP′=90°
可求∠APB=90°+60°=150°.
供参考答案2:
(1)连接PP′,由题意可知BP′=PC=10,AP′=AP,
∠PAC=∠P′AB,而∠PAC+∠BAP=60°,
所以∠PAP′=60度.故△APP′为等边三角形,
所以PP′=AP=AP′=6;
(2)利用勾股定理的逆定理可知:
PP′2+BP2=BP′2,所以△BPP′为直角三角形,且∠BPP′=90°
可求∠APB=90°+60°=150°.