如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为A.B.πC.30-12

发布时间:2020-08-04 15:23:31

如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为A.B.πC.30-12πD.π

网友回答

C
解析分析:易得AD长,利用相应的三角函数可求得∠ABD的度数,进而求得∠EOD的度数,那么一个阴影部分的面积=S△ABD-S扇形DOE-S△BOE,算出后乘2即可.

解答:解:连接OE,OF.∵BD=12,AD:AB=1:2,∴AD=4,AB=8,∠ABD=30°,∴S△ABD==24,S扇形==6π,S△OEB==9,∵两个阴影的面积相等,∴阴影面积=2×(24-6π-9)=30-12π.故选C.

点评:本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.
以上问题属网友观点,不代表本站立场,仅供参考!