如图,已知在△ABC中,AB=AC,E是AD上一点,BE=CE.求证:AD⊥BC.

发布时间:2020-08-06 01:52:17

如图,已知在△ABC中,AB=AC,E是AD上一点,BE=CE.求证:AD⊥BC.

网友回答

证明:在△ABE和△ACE中,
∴△ABE≌△ACE
∴∠BAE=∠CAE,
∴AD是三角形的角平分线,
∴AD⊥BC(等腰三角形三线合一性质).
解析分析:根据SSS先证明△ABE≌△ACE,从而得出∠BAE=∠CAE,根据三线合一可得出AD⊥BC.

点评:本题考查等腰三角形的性质,解答本题的关键证明∠BAE=∠CAE,利用三线合一的性质进行证明.
以上问题属网友观点,不代表本站立场,仅供参考!