如图,⊙O是以数轴原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,过点P且与OB平行的直线与⊙O有公共点,则OP的取值范围是________.

发布时间:2020-08-08 10:02:27

如图,⊙O是以数轴原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,过点P且与OB平行的直线与⊙O有公共点,则OP的取值范围是________.

网友回答

0≤OP≤
解析分析:将过点P且与OB平行的直线平移至P′的位置,使其与⊙O相切,设切点为Q,连接OQ,根据条件证明△OQP′为等腰直角三角形,已知OQ=1,解直角三角形求OP′,确定OP的取值范围.

解答:解:如图,平移过P点的直线到P′,使其与⊙O相切,设切点为Q,连接OQ,
由切线的性质,得∠OQP′=90°,
∵OB∥P′Q,
∴∠OP′Q=∠AOB=45°,
∴△OQP′为等腰直角三角形,
在Rt△OQP′中,OQ=1,
OP′==,
∴当过点P且与OB平行的直线与⊙O有公共点时,0≤OP≤,
当点P在x轴负半轴即点P向左侧移动时,结果相同.
以上问题属网友观点,不代表本站立场,仅供参考!