如图,AB是⊙O的直径,弦BC=2cm,sin∠ABC=.
(1)求⊙O的半径;
(2)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形;
(3)当t为何值时,△BEF的面积最大?最大面积是多少?
网友回答
解:(1)∵AB是⊙O的直径,
∴∠ACB=90°,
∵sin∠ABC=,
∴∠ABC=60°,
∴∠A=30°,AB=2BC=4cm,
∴OA===2cm,即r=2cm;
(2)①当EF⊥BC时.
因为AB为⊙O直径,
所以∠C=90°,
当EF⊥BC,
则有△EBF∽△ABC,
于是=,
即=,
解得t=1.
②当EF⊥AB时.
则有△EBF∽△BCA,
于是=,
即=,
解得t=.
所以,当t=1s或s时,△BEF为直角三角形.
(3)作△BFE的BE边上的高FG.
则FG=BF?sin∠ABC=t.
S△EFB=EB?FG=(4-2t)t=-t2+t,
当t=-=1时,S△EFB取得最大值,为S最大=-+=.
解析分析:(1)根据圆周角定理可知∠ACB=90°,再由sin∠ABC=可求出∠B的度数,再根据直角三角形的性质即可求出AB的长进而求出其半径的长;
(2)当△BEF为直角三角形时,与△ABC相似,可根据相似三角形的性质解答;
(3)用含t的代数式表示出△BEF的高,进而用二次函数表示出其面积,利用二次函数的性质解答即可.
点评:此题是一道综合性很强的题目,涉及圆周角定理、三角函数、二次函数的最值等问题,难度较大,要认真对待.