如图,已知等腰直角△ABC中,∠BAC=90°,圆心O在△ABC内部,且⊙O经过B、C两点,若BC=8,AO=1,求⊙O的半径.
网友回答
解:连结BO、CO,延长AO交BC于D.
∵△ABC是等腰直角三角形,∠BAC=90°,
∴AB=AC
∵O是圆心,
∴OB=OC,
∴直线OA是线段BC的垂直平分线,
∴AD⊥BC,且D是BC的中点,
在Rt△ABC中,AD=BD=BC,
∵BC=8,
∴BD=AD=4,
∵AO=1,
∴OD=BD-AO=3,
∵AD⊥BC,
∴∠BDO=90°,
∴OB===5.
解析分析:连结BO、CO,延长AO交BC于点D,由于△ABC是等腰直角三角形,故∠BAC=90°,AB=AC,再根据OB=OC,可知直线OA是线段BC的垂直平分线,故AD⊥BC,且D是BC的中点,在Rt△ABC中根据AD=BD=BC,可得出BD=AD,再根据AO=1可求出OD的长,再根据勾股定理可得出OB的长.
点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.