如图,四边形ABCD是正方形,G是BC边上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.在图中找出一对全等三角形,并加以证明.
网友回答
解:△AED≌△DFC.
证明:∵四边形ABCD是正方形,
∴AD=DC,∠ADC=90°,
又∵AE⊥DG,CF∥AE,
∴CF⊥DG,
∴∠CFD=90°,
又∵AE⊥DG,
∴∠DEA=90°,
∴∠EAD+∠EDA=90°,
又∵∠CDF+∠EDA=90°,
∴∠EAD=∠FDC,
∴△AED≌△DFC?(AAS).
解析分析:利用正方形的特性可知AD=DC,∠ADC=90°,再结合题中所给的有关角的等量关系可证明△AED≌△DFC.
点评:本题考查正方形的性质及三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角