如图,把长方形ABCD沿FE折叠,使点B落在边AD上的点B′处,点A落在点A′处,若AE=3,BF=4,则AB长是多少?

发布时间:2020-08-06 23:39:04

如图,把长方形ABCD沿FE折叠,使点B落在边AD上的点B′处,点A落在点A′处,若AE=3,BF=4,则AB长是多少?

网友回答

解:由折叠的性质知:A′B′=AB,AE=A′E,BF=B′F,∠A′=∠A=90°,∠B′FE=∠BFE;
又∵AD∥BC,
∴∠BFE=∠B′EF,
∴∠B′EF=∠BFE=∠B′FE,即B′E=B′F=BF;
在Rt△A′B′E中,由勾股定理得:A′B′2+A′E2=B′E2,
即:AB2=BF2-AE2,
∴AB=,即AB的长度是.
解析分析:由折叠的性质知:BF=B′F,且∠B′FE=∠BFE,由AD∥BC可知∠B′EF=∠BFE,通过等量代换可证得B′E=B′F=BF,进而可在Rt△A′B′E中,利用勾股定理得到所求线段与已知线段间的数量关系.

点评:此题考查图形的翻折变换,涉及到矩形的性质、平行线的性质以及勾股定理的综合应用,难度不大.
以上问题属网友观点,不代表本站立场,仅供参考!