如图所示,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,
(1)若∠AEF=50°,求∠EFG的度数.
(2)判断EG与FG的位置关系,并说明理由.
网友回答
解:(1)∵AB∥CD
∴∠EFD=∠AEF=50°,
∵FG平分∠DFE,
∵∠EFG=∠DFE=×50°=25°;
(2)EG⊥FG.
理由:∵AB∥CD,
∴∠BEF+∠EFD=180°,
∵EG平分∠BEF,FG平分∠DFE,
∴∠GEF=∠BEF,∠GFE=∠DFE,
∴∠GEF+∠GFE=∠BEF+∠DFE,
=(∠BEF+∠DFE)
=×180°
=90°,
∴∠G=180°-(∠BEF+∠DFE)=90°
∴EG⊥FG.
解析分析:(1)先根据平行线的性质得出∠EFD=∠AEF=50°,再由FG平分∠DFE即可得出结论;
(2)先由AB∥CD得出∠BEF+∠EFD=180°,再根据EG平分∠BEF,FG平分∠DFE可得出∠GEF+∠GFE的度数,根据三角形内角和定理即可得出结论.
点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.