解答题数列{an}的前n项和为.Sn(bn+3bn-bn+12)+bn+1bn=0.
(I)求{an},{bn}的通项公式;
(II)求证:b3+b2+…+bn<4.
网友回答
解:(I)由,得,,
∴,
∴,
又,
∴,
∴,n≥2,
∴an=4n(n≥2).
∵a1=4满足上式,
∴an=4n.
∵{an}是等差数列,,
∴2n(n+1)(bn+2bn-bn+12)+bn+1bn=0,
,
∴,
当n≥3时,,
=-
=-
=-
=.
=,
∴,显然,n=1,n=2时,上式也成立,
∴,n≥1.
(II)令,
,
两式相减,得
=
=,
∴,
∴b3+b2+…+bn<4.解析分析:(I)由,得,,故,,所以,由此导an=4n.,所以2n(n+1)(bn+2bn-bn+12)+bn+1bn=0,,由此能求出}{bn}的通项公式.(II)令,由错位相减法知,由此能够证明b3+b2+…+bn<4.点评:第(I)题考查利用数列的递推公式求解通项公式的方法;第(II)题考查利用累加法求解数列前n项和的方法,解题时要认真审题,仔细解答.(本题应该把Sn(bn+3bn-bn+12)+bn+1bn=0修改为:Sn(bn+2bn-bn+12)+bn+1bn=0.)