如图,半径为2的正三角形ABC的中心为O,过O与两个顶点画弧,求这三条弧所围成的阴影部分的面积.
网友回答
解:连接AA′、BB′、CC′;
∵△ABC是正三角形,
∴△OAB′也是正三角形;
∴S弓形OA=S扇形AB′O-S△AB′O=-2××=-;
所以S阴影=6×(-)=4π-6.
解析分析:连接AA′、BB′、CC′,因为△ABC是正三角形,可得到△OAB′也是正三角形;所以一个弓形OA的面积就等于扇形AB′O与△AOB′的面积差.依此计算可求得六个弓形的面积.
点评:本题主要考查了扇形面积的计算方法,理清弓形OA的面积计算方法是解题的关键.