如图,四边形ABCD是正方形,以BC边为直径在正方形内作半圆O,再过顶点A作半圆O的切线(切点为F)交CD边于E,则sin∠DAE=________.

发布时间:2020-08-09 05:12:45

如图,四边形ABCD是正方形,以BC边为直径在正方形内作半圆O,再过顶点A作半圆O的切线(切点为F)交CD边于E,则sin∠DAE=________.

网友回答


解析分析:设正方形ABCD的边长为4a,EC=x,根据切线长定理得到AF=AB=4a,EC=EF=x,在Rt△ADE中利用勾股定理可得到x与a的关系,从而可用a表示AE、DE,然后在Rt△ADE中,利用正弦函数的定义求解即可.

解答:设正方形ABCD的边长为4a,EC=x,
∵AF为半圆O的切线,
∴AF=AB=4a,EC=EF=x,
在Rt△ADE中,DE=4a-x,AE=4a+x,
∴AE2=AD2+DE2,即(4a+x)2=(4a)2+(4a-x)2,
解得x=a,
∴AE=5a,DE=3a,
在Rt△ADE中,sin∠DAE===.
以上问题属网友观点,不代表本站立场,仅供参考!