如图所示,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,则∠C=________.
网友回答
30°
解析分析:根据垂直平分线的性质可知BE=EC,DE⊥BC,即可得出△CED≌△BED,再根据角平分线的性质可知∠ABE=2∠DBE=2∠C,根据三角形为直角三角形即可得出∠C的度数.
解答:∵DE是BC的垂直平分线,
∴BE=EC,DE⊥BC,
∴∠CED=∠BED,
∴△CED≌△BED,
∴∠C=∠DBE,
∵∠A=90°,BD是∠ABC的平分线,
∴∠ABE=2∠DBE=2∠C,
∴∠C=30°.
故