如图,PA、PB是⊙O的两条切线,切点是A、B,如果PA=2,∠AOB=120°,求OP的长.

发布时间:2020-08-11 20:05:23

如图,PA、PB是⊙O的两条切线,切点是A、B,如果PA=2,∠AOB=120°,求OP的长.

网友回答

解:∵PA、PB是⊙O的两条切线,切点为A、B,
∴OA⊥PA于A,OB⊥PB于B,
又∵OA=OB,OP=OP,
∴Rt△OAP≌Rt△OBP,
∴∠AOP=∠BOP=∠AOB,
∴∠AOP=60°.
在Rt△AOP中,AP=2,∠AOP=60°,
∴OP==4.
故OP的长为4.
解析分析:根据切线的性质可证得Rt△OAP≌Rt△OBP,所以∠AOP=∠BOP=∠AOB,从而知∠AOP=60°,在Rt△AOP中,由sin60°=,即求OP的长.

点评:本题主要考查切线的性质和全等三角形的判定与性质.注意运用正弦的概念是关键.
以上问题属网友观点,不代表本站立场,仅供参考!