如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点.(1)试说明四边形AECF是平行四边形.(2)若AC=2,AB=1.若AC⊥A

发布时间:2020-08-07 23:50:26

如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点.(1)试说明四边形AECF是平行四边形.
(2)若AC=2,AB=1.若AC⊥AB,求线段BD的长.

网友回答

(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵E,F为OB,OD的中点,
∴OE=OF,
∴AC与EF互相平分,
∴四边形AECF为平行四边形;

(2)解:∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,
∵AC=2,
∴AO=2,
∵AB=1,AC⊥AB,
∴BO===,
∴BD=2.
解析分析:(1)在平行四边形ABCD中,AC与BD互相平分,OA=OC,OB=OD,又E,F为OB,OD的中点,所以OE=OF,所以AC与EF互相平分,所以四边形AECF为平行四边形;
(2)首先根据平行四边形的性质可得AO=CO,BO=DO,再利用勾股定理计算出BO的长,进而可得BD的长.

点评:此题主要考查了平行四边形的判定与性质,关键是掌握平行四边形对角线互相平分.
以上问题属网友观点,不代表本站立场,仅供参考!