如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=E

发布时间:2020-08-07 23:50:01

如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)求证:AF=CE;
(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.

网友回答

(1)证明:∵AF∥EC,
∴∠DFA=∠DEC,∠DAF=∠DCE,
∵D是AC的中点,
∴DA=DC,
∴△DAF≌△DCE,
∴AF=CE;

(2)解:四边形AFCE是正方形.理由如下:
∵AF∥EC,AF=CE,
∴四边形AFCE是平行四边形,
又∵AC=EF,
∴平行四边形AFCE是矩形,
∴∠FCE=∠CFA=90°,
而∠ACB=135°,
∴∠FCA=135°-90°=45°,
∴∠FAC=45°,
∴FC=FA,
∴矩形AFCE是正方形.
解析分析:(1)由AF∥EC,根据平行线的性质得到∠DFA=∠DEC,∠DAF=∠DCE,而DA=DC,易证得△DAF≌△DCE,得到结论;
(2)由AF∥EC,AF=CE,根据平行四边形的判定得到四边形AFCE是平行四边形,再根据对角线相等即AC=EF,可判断平行四边形AFCE是矩形,则∠FCE=∠CFA=90°,通过
∠ACB=135°,可得到∠FCA=135°-90°=45°,则易判断矩形AFCE是正方形.

点评:本题考查了平行四边形的判定与性质:一组对边平行且相等的四边形是平行四边形.也考查了矩形、正方形的判定方法.
以上问题属网友观点,不代表本站立场,仅供参考!