如图,双曲线y=经过四边形OABC的顶点A、C,∠B=90°,OC平分OA与x轴的夹角,AB∥x轴,且S四边形OABC=2,将△ABC沿AC翻折后得△AB′C,B′点

发布时间:2020-08-08 16:12:27

如图,双曲线y=经过四边形OABC的顶点A、C,∠B=90°,OC平分OA与x轴的夹角,AB∥x轴,且S四边形OABC=2,将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则k=________.

网友回答

2
解析分析:延长BC,交x轴于点D,设点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD=k,则S△OCB′=k,由AB∥x轴,得点A(x-a,2y),由题意得2y(x-a)=k,从而得出三角形ABC的面积等于k,根据S四边形OABC=2,即可得出
以上问题属网友观点,不代表本站立场,仅供参考!