在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q在x轴上.若点R的坐标为R(2,2),则QP+QR的最小值为_

发布时间:2020-08-10 17:11:33

在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q在x轴上.若点R的坐标为R(2,2),则QP+QR的最小值为________.

网友回答


解析分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR的值即可.

解答:解:当点P在直线y=-x+3和x=1的交点上时,
作P关于x轴的对称点P′,连接P′R,交x轴于Q,此时PQ+QR最小,
连接PR,
∵PR=1,PP′=4,
∴P′R==,
∴QP+QR的最小值为.
以上问题属网友观点,不代表本站立场,仅供参考!