如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分AC,交AC于点E,交AB于点D,连接CD.若AD=4cm,则DB的长是________.
网友回答
2cm
解析分析:由DE垂直平分AC,根据线段垂直平分线的性质,可求得CD=AD=4cm,又由等边对等角,可求得∠ACD的度数,继而求得∠BCD的度数,然后由含30°角的直角三角形的性质,求得DB的长.
解答:∵DE垂直平分AC,AD=4cm,
∴CD=AD=4cm,
∴∠ACD=∠A=30°,
∵在Rt△ABC中,∠B=90°,∠A=30°,
∴∠ACB=90°-∠A=60°,
∴∠BCD=∠ACB-∠ACD=30°,
∴BD=CD=2(cm).
故