如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠

发布时间:2020-08-07 13:51:48

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

网友回答

解:(1)解方程x2-4x+3=0得:
x=1或x=3,而OA<OB,
则点A的坐标为(-1,0),点B的坐标为(3,0);
∵A、B关于抛物线对称轴对称,
∴△DAB是等腰三角形,而∠DAB=45°,
∴△DAB是等腰直角三角形,得D(1,-2);
令抛物线对应的二次函数解析式为y=a(x-1)2-2,
∵抛物线过点A(-1,0),
∴0=4a-2,得a=,
故抛物线对应的二次函数解析式为y=(x-1)2-2(或写成y=x2-x-);

(2)∵CA⊥AD,∠DAC=90°,
又∵∠DAB=45°,
∴∠CAB=45°;
令点C的坐标为(m,n),则有m+1=n,
∵点C在抛物线上,
∴n=(m-1)2-2;
化简得m2-4m-5=0
解得m=5,m=-1(舍去),
故点C的坐标为(5,6);

(3)由(2)知AC=6,而AD=2,
∴DC=;
过A作AM⊥CD,
又∵,
∴AM=,
又∵S△ADC=S△APD+S△APC
∴,
d1+d2=;
即此时d1+d2的最大值为4.
解析分析:(1)通过解方程即可求得OA、OB的长,从而得到点A、B的坐标,由于A、B关于抛物线的对称轴对称,且∠DAB=45°,那么△DAB是等腰直角三角形,即可利用点A、B的坐标求得点D的坐标,然后根据待定系数法求得抛物线的解析式;
(2)由于AC⊥AD,且∠DAB=45°,则∠CAB=45°,设出点C的横坐标,那么其纵坐标应为m+1,然后将C点坐标代入抛物线的解析式中,即可求得点C的坐标;
(3)易得AC、AD的长,由于△ACD是直角三角形,那么AC?AD=AP?d1+AP?d2,由此可得d1+d2=,过A作AM⊥CD于M,利用△ACD的面积可求得AM的长,在Rt△APM中,AP≥AM,故d1+d2≤,而AC、AD、AM的长都已求得,由此可确定d1+d2的最大值.

点评:此题主要考查了等腰直角三角形的性质、二次函数解析式的确定、函数图象交点坐标的求法、三角形面积的计算方法以及不等式的应用等重要知识,涉及知识面广,难度较大.
以上问题属网友观点,不代表本站立场,仅供参考!