已知实数a,b,c,r,p满足pr>1,pc-2b+ra=0,求证:一元二次方程ax2+2bx+c=0必有实数根.

发布时间:2020-08-12 03:51:43

已知实数a,b,c,r,p满足pr>1,pc-2b+ra=0,求证:一元二次方程ax2+2bx+c=0必有实数根.

网友回答

证明:由已知得2b=pc+ra,
所以△=(2b)2-4ac=(pc+ra)2-4ac
=p2c2+2pcra+r2a2-4ac
=p2c2-2pcra+r2a2+4pcra-4ac
=(pc-ra)2+4ac(pr-1).
由已知pr-1>0,又(pc-ra)2≥0,
所以当ac≥0时,△≥0;
当ac<0时,也有△=(2b)2-4ac>0.
综上,总有△≥0,
故原方程必有实数根.
解析分析:先计算出△,由pc-2b+ra=0消去△中的b,然后把△变形为(pc-ra)2+4ac(pr-1),无论ac为何值(a≠0),必有△≥0.

点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了代数式的变形能力.
以上问题属网友观点,不代表本站立场,仅供参考!