如图,在△ABC中,AB=AC=5,D是BC边上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是________.
网友回答
10
解析分析:因为AB=AC,所以△ABC为等腰三角形,由DE∥AB,可证△CDE为等腰三角形,同理△BDF也为等腰三角形,根据腰长相等,将线段长转化,求周长.
解答:∵AB=AC=5,∴∠B=∠C,
由DF∥AC,得∠FDB=∠C=∠B,
∴FD=FB,
同理,得DE=EC.
∴四边形AFDE的周长=AF+AE+FD+DE
=AF+FB+AE+EC
=AB+AC
=5+5=10.
故