已知函数f(x)对一切实数x,y∈R都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.(1)求f(0)的值;(2)求?f(x)的解析式.

发布时间:2020-08-07 03:28:29

已知函数f(x)对一切实数x,y∈R都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求?f(x)的解析式.

网友回答

解:(1)因为函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立.且f(1),所以令x=1,y=0,
代入上式得f(1)-f(0)=2,所以f(0)=-2.
(2)因为函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,所以令y=0,代入上式得
f(x)-f(0)=x(x+1),又由(1)知f(0)=-2,所以f(x)=x(x+1)-2.
解析分析:(1)根据对一切实数x,y∈R都有f(x+y)-f(y)=x(x+2y+1)成立,且题中已经给出了f(1)=0,要求的值是f(0),所以,令x=1,y=0即可求f(0);
(2)在(1)中已经求出了f(0)的值,只需在给出的等式中取y=0即可求?f(x)的解析式.

点评:本题考查抽象函数及其应用,解决抽象函数的问题一般应用赋值法.关键是结合已知条件和要求的结论对变量恰当赋值.
以上问题属网友观点,不代表本站立场,仅供参考!