已知△ABC中,AB=AC,BD是AC边上的中线,若AB=13,BC=10,
试求tan∠DBC的值.
网友回答
解:方法一:过点A作AH⊥BC,垂足为点H,交BD于点E
∵AB=AC=13,BC=10
∴BH=5
在Rt△ABH中,AH=12
∵BD是AC边上的中线
所以点E是△ABC的重心
∴EH==4
∴在Rt△EBH中,.
方法二:过点A、D分别作AH⊥BC、DF⊥BC,垂足分别为点H、F
∵BC=10,AH⊥BC,AB=AC,
∴BH=5
∵AB=13,
∴AH==12,
在Rt△ABH中,AH=12
∵AH∥DF
∴DF=
BF==
∴在Rt△DBF中,.
解析分析:(1)作等腰三角形底边上的高AH并根据勾股定理求出,与BD交点为E,则E是三角形的重心,再根据三角形重心的性质求出EH,∠DBC的正切值即可求出.
(2)作出底边上的高,在过D作DF⊥BC,先根据勾股定理求出AH的长,再根据三角形中位线定理求出DF的长,BF的长就等于BC的,∠DBC的正切值即可求出.
点评:本题利用等腰三角形三线合一的性质和勾股定理,第一种方法还运用三角形的重心把中线分成2:1的两段,第二种方法还运用三角形中位线定理都需要熟练掌握.