如图,在△ABC中,AD⊥BC于D,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3);(4)AB2=BD?BC.其中一定能够判定△ABC是直角三角形的有(填序号)______.
网友回答
解:(1)不能,
∵AD⊥BC,
∴∠B+∠BAD=90°,
∵∠B+∠DAC=90°,
∴∠BAD=∠DAC,
∴△ABD≌△ACD(ASA),
∴AB=AC,
∴△ABC是等腰三角形,
∴无法证明△ABC是直角三角形;
(2)能,
∵AD⊥BC,
∴∠B+∠BAD=90°,
∵∠B=∠DAC,
∴∠BAC=∠BAD+∠DAC=∠BAD+∠B=90°;
(3)能
∵CD:AD=AC:AB,∠ADB=∠CDA=90°,
∴Rt△ABD∽Rt△CAD,(因为都有一个直角,两组对应边成比例)
∴∠ABD=∠CAD;∠BAD=∠ACD
∵∠ABD+∠BAD=90°
∴∠CAD+∠BAD=90°
∵∠BAC=∠CAD+∠BAD
∴∠BAC=90°;
(4)能,
∵能说明△CBA∽△ABD,
∴△ABC一定是直角三角形.
∴一定能够判定△ABC是直角三角形的有(2)(3)(4).
故