如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为________.

发布时间:2020-08-06 16:28:07

如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为________.

网友回答

3cm2
解析分析:过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角,在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=×BC×DF.

解答:解:过D点作DF⊥BE的垂线,垂足为F,
∵∠ABC=30°,∠ABE=150°
∴∠CBE=∠ABC+∠ABE=180°,
∵在Rt△ABC中,AB=4,∠ABC=30°,
∴AC=2,BC=2,
由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,
由DF×BE=BD×DE,即DF×4=2×2,
解得DF=,
S△BCD=×BC×DF=×2×=3cm2.
以上问题属网友观点,不代表本站立场,仅供参考!