如图,在等边△ABC中,AC=9,点O在AC上,且A0=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是________.
网友回答
6
解析分析:连接OD.由题意可知OP=DP=OD,即△PDO为等边三角形,所以∠OPA=∠PDB=∠DPA-60°,推出△OPA≌△PDB,根据全等三角形的对应边相等知OA=BP=3,则AP=AB-BP=6.
解答:解:连接OD,∵PO=PD,∴OP=DP=OD,∴∠DPO=60°,∵等边△ABC,∴∠A=∠B=60°,AC=AB=9,∴∠OPA=∠PDB=∠DAP-60°,∴△OPA≌△PDB,∵AO=3,∴AO=PB=3,∴AP=6.故