如图,C是射线OE上的一动点,AB是过点C的弦,直线DA与OE的交点为D,现有三个论断:①DA是⊙O的切线;②DA=DC;③OD⊥OB.请你以其中的两个论断为条件,另

发布时间:2020-08-05 12:42:35

如图,C是射线OE上的一动点,AB是过点C的弦,直线DA与OE的交点为D,现有三个论断:①DA是⊙O的切线;②DA=DC;③OD⊥OB.请你以其中的两个论断为条件,另一个论断为结论,用序号写出一个真命题,用“★★?★”表示.并给出证明.我的命题是:________.

网友回答

①②?③

解析分析:观察三个条件都是围绕切线的性质(连接OA),等角的余角相等,等边对等角来进行求解的,可任选两个按上述思路进行求解.

解答:解:我的命题是:①②?③,
证明:连接OA,则OA⊥DA,
∵DA=DC,
∴∠DAC=∠DCA,
∵OA=OB,
∴∠B=∠OAB;
∵∠OAB+∠DAC=90°,
又∵∠OCB=∠DCA,
∴∠B+∠OCB=90°,
∴OD⊥OB.

点评:本题主要考查了切线的性质,根据等角的余角相等,等边对等角进行求解是本题的基本思路.
以上问题属网友观点,不代表本站立场,仅供参考!