如图,已知扇形AOB的半径为12,OA⊥OB,C为OB上一点,以OA为直径的半圆O1;和以BC为直径的半圆O2相切于点D,则图中阴影部分的面积是A.6πB.10πC.

发布时间:2020-07-30 00:03:23

如图,已知扇形AOB的半径为12,OA⊥OB,C为OB上一点,以OA为直径的半圆O1;和以BC为直径的半圆O2相切于点D,则图中阴影部分的面积是A.6πB.10πC.12πD.20π

网友回答

B
解析分析:要求阴影的面积,扇面AOB减去两半圆面积就是,半圆O1半径已知是6,只要求得半圆O2的半径即可,连接O1O2,因为OA⊥OB,所以由勾股定理OO12+OO22=O1O22可得r=4,所以阴影面积=π122-π62-π42=10π.

解答:如图所示连接O1O2,设BC=2r,AO=2R,∵半圆O1,半圆O2相切,∴O1O2过D点,O1O2=6+r,∵OA⊥OB,∴OO12+OO22=O1O22,∴R2+(12-r)2=(6+r)2,∴r=4,所以阴影面积=π×122-π×62-π×42=10π.

点评:本题考查了相切圆的性质,扇面面积的计算,以及勾股定理的运用,同学们应熟练掌握.
以上问题属网友观点,不代表本站立场,仅供参考!