已知:△ABC中,AB=10.(1)如图①,若点D、E分别是AC、BC边的中点,求DE的长;(2)如图②,若点A1,A2把AC边三等分,过A1,A2作AB边的平行线,

发布时间:2020-08-08 19:39:30

已知:△ABC中,AB=10.
(1)如图①,若点D、E分别是AC、BC边的中点,求DE的长;
(2)如图②,若点A1,A2把AC边三等分,过A1,A2作AB边的平行线,分别交BC边于点B1,B2,求A1B1+A2B2的值;
(3)如图③,若点A1,A2,…,A10把AC边十一等分,过各点作AB边的平行线,分别交BC边于点B1,B2,…B10.根据你所发现的规律,直接写出A1B1+A2B2+…+A10B10的结果.

网友回答

解:(1)∵D、E分别是AC、BD的中点,且AB=10,
∴DE=AB=5;

(2)设A1B1=x,则A2B2=2x.
∵A1、A2是AC的三等分点,且A1B1∥A2B2∥AB,
∴A2B2是梯形A1ABB1的中位线,即:x+10=4x,得x=,
∴A1B1+A2B2=10;

(3)同理可得:A1B1+A2B2+…+A10B10=.
解析分析:(1)根据三角形的中位线定理进行计算;
(2)设A1B1=x,根据三角形的中位线定理和梯形的中位线定理列方程求解;
(3)根据(1)和(2)的解答过程,发现每一条线段的长和总线段之间的关系:有n等分点的时候,则A1B1=,A2B2=,…An-1Bn-1=.

点评:此题主要是三角形的中位线定理和梯形的中位线定理的综合运用.
以上问题属网友观点,不代表本站立场,仅供参考!