实数a、b、c满足:a2+6b=-17,b2+8c=-23,c2+2a=14,则a+b+c=________.
网友回答
-8
解析分析:将已知三个等式的左右分别相加,然后根据配方法将a2+6b+b2+8c+c2+2a转化为偶次方的和的形式(a+1)2+(b+3)2+(c+4)2=0;最后根据非负数的性质解答.
解答:∵a2+6b=-17,b2+8c=-23,c2+2a=14,
∴a2+6b+b2+8c+c2+2a=-26,
∴(a2+2a+1)+(b2+6b+9)+(c2+8c+16)=0,
即(a+1)2+(b+3)2+(c+4)2=0,
∴a+1=0,即a=-1;b+3=0,即b=-3;c+4=0,即c=-4;
∴a+b+c=-8.
故