如图,在△ABC中,∠ACB=90°,CD⊥AB,∠A=30°,AC=3cm,以C为圆心,为半径画⊙C,指出点A、B、D与⊙C的位置关系.若要⊙C经过点D,则这个圆的

发布时间:2020-08-09 12:48:35

如图,在△ABC中,∠ACB=90°,CD⊥AB,∠A=30°,AC=3cm,以C为圆心,为半径画⊙C,指出点A、B、D与⊙C的位置关系.若要⊙C经过点D,则这个圆的半径应有多长?

网友回答

解:∵CA=3cm>cm,
∴点A在⊙C外;
∵在△ABC中,∠ACB=90°,∠A=30°,AC=3cm,
∴BC=AC?tan30°=3×=(cm),
∴点B在⊙C上;
∵在△ADC中,CD⊥AB,∠A=30°,AC=3cm,
∴CD=AC=cm<cm,
∴点D在⊙C内;
∵CD=cm,
∴要⊙C经过点D,则这个圆的半径应有cm.
解析分析:要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;本题可通过解直角三角形求出点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.

点评:本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
以上问题属网友观点,不代表本站立场,仅供参考!