如图,P是等边△ABC形内一点,连接PA、PB、PC,PA:PB:PC=3:4:5,以AC为边在形外作△AP′C≌△APB,连接PP′,则以下结论错误的是A.△APP'是正三角形B.△PCP'是直角三角形C.∠APB=150°D.∠APC=135°
网友回答
D
解析分析:先运用全等得出AP′=AP,∠CAP′=∠BAP,从而∠PAP′=∠BAC=60°,得出△PAP′是等边三角形,∠AP′P=60°,PP′=AP,再运用勾股定理逆定理得出∠PP′C=90°,由此得解.
解答:△ABC是等边三角形,则∠BAC=60°,又△AP'C≌△APB,则AP=AP′,∠PAP′=∠BAC=60°,∴△APP'是正三角形,又PA:PB:PC=3:4:5,∴设PA=3x,则:PP′=PA=3x,P′C=PB=4x,PC=5x,根据勾股定理的逆定理可知:△PCP'是直角三角形,且∠PP′C=90°,又△APP'是正三角形,∴∠AP′P=60°,∴∠APB=150°错误的结论只能是∠APC=135°.故选D.
点评:解决本题的关键是能够正确理解题意,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.