如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC.(1)求证:△MAC是等腰三角形;(2)若AC为⊙O直径,求证:AC2=2AM?AB.

发布时间:2020-08-05 21:29:09

如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC.
(1)求证:△MAC是等腰三角形;
(2)若AC为⊙O直径,求证:AC2=2AM?AB.

网友回答

证明:(1)∵弧AD=弧CB,
∴∠MCA=∠MAC.
∴△MAC是等腰三角形.

(2)连接OM,
∵AC为⊙O直径,
∴∠ABC=90°.
∵△MAC是等腰三角形,AM=CM,OA=OC,
∴MO⊥AC.
∴∠AOM=∠ABC=Rt△.
∵∠MAO=∠CAB,
∴△AOM∽△ABC.

∴AO?AC=AM?AB.
∴AC2=2AM?AB.

解析分析:(1)由等弧对等角可得∠MCA=∠MAC,再由等角对等边得AM=MC;
(2)求证△AOM∽△ABC、有AO?AC=AM?AB,而AC=2AO,故有AC2=2AM?AB.

点评:本题利用了圆周角定理,等腰三角形的判定和性质,直径对的圆周角为直角,相似三角形的判定和性质求解.
以上问题属网友观点,不代表本站立场,仅供参考!