附加题:如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=9,求此梯形的中位线长.
网友回答
解:作DE∥AC,交BC的延长线于E,则四边形ACED为平行四边形,
∴AD=CE,
∵AC⊥BD,
∴∠BDE=90°,
∴梯形的中位线长=(AD+BC)=(CE+BC)=BE,
∵BE===15.
∴梯形的中位线长=×15=7.5.
解析分析:作DE∥AC,交BC的延长线于E,则四边形ACED为平行四边形,根据已知及平行四边形的性质得梯形的中位线等于BE的一半,根据勾股定理可求得BE的长,从而不难求得其中位线的长.
点评:解答此题的关键是作出辅助线,构造出平行四边形和直角三角形,将求梯形中位线转化为求直角三角形斜边的问题来解答.