下列说法:①如图1,△ABC中,AB=AC,∠A=45°,则△ABC能被一条直线分成两个小等腰三角形.②如图2,△ABC中,AB=AC,∠A=36°,BD,CE分别为

发布时间:2020-07-31 01:14:38

下列说法:
①如图1,△ABC中,AB=AC,∠A=45°,则△ABC能被一条直线分成两个小等腰三角形.
②如图2,△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,且相交于点F,则图中等腰三角形有6个.
③如图3,△ABC是等边三角形,CD⊥AD,且AD∥BC,则AD=AB.
④如图4,△ABC中,点E是AC上一点,且AE=AB,连接BE并延长至点D,使AD=AC,∠DAC=∠CAB,则∠DBC=∠DAB其中,正确的有________(请写序号,错选少选均不得分)

网友回答

③④

解析分析:不管过A(或过B或过C)作直线,都不能把三角形ABC分成两个等腰三角形,即可判断①;求出∠A=∠ABD=∠DBC=∠ACE=∠BCE=36°,根据三角形的内角和定理求出三角形其余角的度数,根据等腰三角形的判定定理推出边相等,即可判断②;求出∠ACD=30°,根据含30度角的直角三角形性质求出AD=AC,即可判断③;过C作CF∥BD交AB的延长线于F,连接DC,EF,求出EF=BC,证三角形全等推出DE=EF,DC=CF,推出CD=BC,推出∠CDB=∠CBD,根据三角形的内角和定理求出∠CDB=∠CAB即可.

解答:解:若△ABC中,AB=AC,∠A=45°,不论过A作直线(或过B作直线或过C作直线)都不能把三角形ABC化成两个等腰三角形,∴①错误;图②中,有等腰三角形7个:△ABD,△CBD,△ACE,△CDE,△BEF,△CDF,△FBC,∴②错误;∵等边△ABC,∴AB=AC,∠ACB=60°,∵AD∥BC,CD⊥AD,∴∠DCB=∠D=90°,∴∠ACD=30°,∴AD=AC=AB,∴③正确;过C作CF∥BD交AB的延长线于F,连接DC,EF,∴=,∵AE=AB,AD=AC,∴AF=AC=AD,∴CE=BF,即BE∥CF,CE=BF,∴四边形BECF是等腰梯形,∴EF=BC,在△DAC和△FAC中,∴△DAC≌△FAC,∴CD=CF,同理DE=EF,∵AD=AC,AE=AB,∴∠ADC=∠ACD,∠AEB=∠ABE,∵∠DAC=∠BAC,∠DAC+∠ACD+∠ADC=180°,∠CAB+∠AEB+∠ABE=180°,∴∠ACD=∠AEB,∵∠AEB=∠DEC,∴∠ACD=∠DEC,∴DE=CD,∴DC=CF=EF=ED,∵EF=CB,∴DC=BC,∴∠CBD=∠CDE,∵∠DCA=∠DEC=∠AEB=∠ABE,由三角形的内角和定理得:∠CDE=∠CAB=∠DAB,∴∠DBC=∠DAB,∴④正确.故
以上问题属网友观点,不代表本站立场,仅供参考!