如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(点D不能到达点B、C),连接AD,作∠ADE=45°,DE交AC于E.当△ADE为等腰三角

发布时间:2020-08-06 18:50:12

如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(点D不能到达点B、C),连接AD,作∠ADE=45°,DE交AC于E.当△ADE为等腰三角形时,线段AE的长为________.

网友回答

1或4-
解析分析:分类讨论:当EA=ED,△ADE为等腰三角形,由∠ADE=45°得到∠EAD=45°,∠AED=90°,则AD平分∠BAC,AD⊥BC,DE⊥AC,然后根据等腰直角三角形的性质得到DE=AC=1;当DA=DE,△ADE为等腰三角形,由∠ADE=45°得到∠ADB+∠EDC=180°-45°=135°,而∠EDC+∠DEC=135°,所以∠ADB=∠DEC,根据三角形相似的判定得到△ABD∽△DCE,则BD:CE=AB:DC=AD:DE,利用AD=DE得到AB=DC=2,BD=CE;由于∠BAC=90°,AB=AC=2,跟级等腰直角三角形的性质得BC=2,所以BD=2-2=EC,然后根据AE=AC-EC进行计算.

解答:当EA=ED,△ADE为等腰三角形,
∵∠ADE=45°,
∴∠EAD=45°,∠AED=90°,
∵∠BAC=90°,
∴AD平分∠BAC,AD⊥BC,DE⊥AC,如图,
∵AB=AC=2,
∴DE=AC=1;
当DA=DE,△ADE为等腰三角形,如图,
∵∠ADE=45°,
∴∠ADB+∠EDC=180°-45°=135°,
而∠EDC+∠DEC=135°,
∴∠ADB=∠DEC,
而∠B=∠C,
∴△ABD∽△DCE,
∴BD:CE=AB:DC=AD:DE,
而AD=DE,
∴AB=DC=2,BD=CE,
∵∠BAC=90°,AB=AC=2,
∴BC=AC=2,
∴BD=2-2=EC,
∴AE=AC-EC=2-(2-2)=4-2.
以上问题属网友观点,不代表本站立场,仅供参考!