如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,DE⊥AB,DF⊥AC垂足分别为E,F.求证:四边形DEAF是正方形.
网友回答
证明:∵DE⊥AB,DF⊥AC
∴∠AED=90°,∠AFD=90°
∵∠BAC=90°
∴∠EDF=90°
∴□AEDF是矩形
在△BDE和△CDF中
∵AB=AC
∴∠ABC=∠ACB
∵DE⊥AB,DF⊥AC
∴∠DEB=∠DFC
又∵D是BC的中点
∴BD=DC
∴△BDE≌△CDF
∴DE=DF
∴□AEDF是正方形
解析分析:由题意先证明□AEDF是矩形,再根据两角及其一角的对边对应相等来证△BDE≌△CDF,根据有一组对边相等的矩形证明□AEDF是正方形.
点评:本题考查的是正方形的判定方法,考查了矩形、全等三角形等基础知识的灵活运用,判别一个四边形是正方形主要是根据正方形的定义及其性质.