已知a,b,c为实数,且a2+b2+c2+2ab=1,2ab(a2+b2+c2)=,一元二次方程(a+b)x2-(2a+c)x-(a+b)=0的两根为α,β.试求2α

发布时间:2020-08-05 17:49:13

已知a,b,c为实数,且a2+b2+c2+2ab=1,2ab(a2+b2+c2)=,一元二次方程(a+b)x2-(2a+c)x-(a+b)=0的两根为α,β.试求2α3+β-5-β-1的值.

网友回答

解:由已知,
得a2+b2+c2及2ab是方程t2-t+=0的两根.
而方程t2-t+=0的两根为t1=t2=,
∴a2+b2+c2=2ab=.
解得,
于是,题设方程可化为x2-x-1=0①.
由α,β是方程①的两根,
则α+β=1,且.
由②得α2=α+1,
从而α3=α?α2=α(α+1)=α2+α=2α+1.
显然β≠0,
将③两边分别除以β,β2.
得.
而β-3=β-1?β-2=(β-1)(2-β)=3β-β2-2=2β-3.
β-5=β-2?β-3=(2-β)(2β-3)=7β-2β2-6=7β-2(β+1)-6=5β-8.
∴2α3+β-5-β-1=4(α+β)-5=-1.
解析分析:根据根与系数的关系可以把a2+b2+c2和2ab看作是方程t2-t+=0的两根,求得两根后,则有a2+b2+c2-2ab=0,(a-b)2+c2=0,因此根据几个非负数的和为0,则它们同时为0,求得a,b,c的值,再进一步得到关于x的方程,再根据根与系数的关系变形求解.

点评:(1)一元二次方程根的情况与判别式△的关系:
①△>0?方程有两个不相等的实数根;
②△=0?方程有两个相等的实数根;
③△<0?方程没有实数根.
(2)一元二次方程根与系数的关系:xl+x2=-,xl?x2=.
以上问题属网友观点,不代表本站立场,仅供参考!