有一抛物线形隧道跨度为8米,拱高为4米.
(1)建立适当的平面直角坐标系,使隧道的顶端坐标为(0,4);隧道的地面所在直线为x轴,求出此坐标系中抛物线形隧道对应的函数关系式;
(2)一辆装满货后宽度为2米的货车要通过隧道,为保证通车安全,车要从正中通过,车顶离隧道项部至少要有0.5米的距离,试求货车安全行驶装货的最大高度为多少米?
网友回答
解:(1)∵隧道跨度为8米,隧道的顶端坐标为(0,4),
∴A、B关于y轴对称,
∴OA=OB=AB=×8=4,
∴点B的坐标为(4,0),
设抛物线顶点式形式y=ax2+4,
把点B坐标代入得,16a+4=0,
解得a=-,
所以,抛物线解析式为y=-x2+4;
(2)∵车的宽度为2米,车从正中通过,
∴x=1时,y=-×12+4=,
∴货车安全行驶装货的最大高度为-=(米).
解析分析:(1)根据跨度求出点B的坐标,然后设抛物线顶点式形式y=ax2+4,然后把点B的坐标代入求出a的值,即可得解;
(2)根据车的宽度为2,求出x=1时的函数值,再根据限高求出可装货物的最大高度即可.
点评:本题考查了二次函数的应用,主要利用了二次函数的图象的对称性,待定系数法求二次函数解析式,以及二次函数图象上点的坐标特征,比较简单.