已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的个数.(1)设集合P={2,4,

发布时间:2020-08-07 09:55:19

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的个数.
(1)设集合P={2,4,6,8},Q={2,4,8,16},分别求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

网友回答

解:(1)由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,
得l(Q)=6
(2)因为集合A={a1,a2,a3,…,an}最多有个ai+aj(1≤i<j≤n)的值,
所以l(A)≤.
又集合A={2,4,8,…,2n},任取ai+aj,ak+al(1≤i<j≤n,1≤k<l≤n),
当j≠l时,不妨设j<l,则ai+aj<2aj=2j+1≤al<ak+al,即ai+aj≠ak+al.
当j=l,i≠k时,ai+aj≠ak+al.
因此,当且仅当i=k,j=l时,ai+aj=ak+al.
即所有ai+aj(1≤i<j≤n)的值两两不同,
所以l(A)=.
解析分析:(1)根据定义确定l(P),l(Q);
(2)由题意可得:l(A)≤,再分情况讨论当j≠l时与当j=l,i≠k时,均有ai+aj≠ak+al,进而得到l(A)=.

点评:本题主要考查集合与元素的关系,以及组合的有关知识,认真审题,正确的理解题意并且仔细解答是解题的关键点.
以上问题属网友观点,不代表本站立场,仅供参考!