如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10,则CE的长为________.
网友回答
4或6
解析分析:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BMG,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,可以求CE的长度.
解答:解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,易知四边形BCDM是正方形,所以BC=BM,∠C=∠BMG=90°,EC=GM,∴△BEC≌△BMG(SAS),∴∠MBG=∠CBE,∵∠ABE=45°,∴∠CBE+∠ABM=45°,∴∠GBM+∠ABM=45°,∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10,设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE中,AE2=AD2+DE2,∴100=(x+2)2+(12-x)2,即x2-10x+24=0;解得:x1=4,x2=6.故CE的长为4或6.
点评:本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和对应边相等的性质,本题中求△ABE≌△ABG即AG=AE=10是解题的关键.