如图1,△ABC中,∠BAC=90°,BA=AC,(1)D为AC的中点,连BD,过A点作AE⊥BD于E点,交BC于F点,连DF,求证:∠ADB=∠CDF.(2)若D,

发布时间:2020-08-08 03:06:11

如图1,△ABC中,∠BAC=90°,BA=AC,
(1)D为AC的中点,连BD,过A点作AE⊥BD于E点,交BC于F点,连DF,求证:∠ADB=∠CDF.
(2)若D,M为AC上的三等分点,如图2,连BD,过A作AE⊥BD于点E,交BC于点F,连MF,判断∠ADB与∠CMF的大小关系并证明.

网友回答

(1)证明:作AG平分∠BAC,交BD于点G?????
∵∠BAC=90°,AE⊥BD,
∴∠DAE+∠ADB=∠ABE+∠ADB=90°,
∴∠ABG=∠CAF,
∵△ABC是等腰直角三角形,
∴AB=AC,∠C=∠BAG=45°,

∴△BAG≌△CAF,(ASA)
∴AG=CF,
又∵AD=CD,∠GAD=∠C=45°,
∴△AGD≌△DFC,(SAS)
∴∠ADB=∠CDF;

(2)解:∠ADB=∠CMF.
证明:作AG平分∠BAC,交BD于点G
∵∠BAC=90°,AE⊥BD,
∴∠DAE+∠ADB=∠ABE+∠ADB=90°,
∴∠ABG=∠CAF,
∵△ABC是等腰直角三角形,
∴AB=AC,∠C=∠BAG=45°,

∴△BAG≌△CAF,(ASA)
∴AG=CF,
又∵AD=CM,∠GAD=∠C=45°,
∴△AGD≌△CFM,(SAS)
∴∠ADG=∠CMF;
即:∠ADB=∠CMF.
解析分析:(1)由∠BAC为直角,得到其他两锐角互余,又根据AE与BD垂直,得到三角形ADF为直角三角形,故两锐角也互余,根据同角的余角相等即可得证;
(2)首先证明△BAG≌△CAF,进而得出△AGD≌△CFM,根据全等三角形对应角相等即可得证.

点评:此题考查了等腰直角三角形的性质,以及全等三角形的判定与性质.对条件充分认识和对知识点的系统利用,添加合适的辅助线,构造全等三角形是解本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!