如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北

发布时间:2020-08-06 15:25:43

如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.

网友回答

解:根据题意得:∠CAB=90°-60°=30°,∠CBD=90°-30°=60°,AB=200米,CD⊥AB,
则∠ACB=∠CBD-∠CAB=60°-30°=30°,
则BC=AB=200米,
在Rt△CBD中,CD=BC?sin60°=200×=100(米).
答:河宽CD为100米.
解析分析:首先由题意可得:∠CAB=90°-60°=30°,∠CBD=90°-30°=60°,AB=200米,CD⊥AB,则可证得△ABC是等腰三角形,即BC=AB,然后在Rt△CBD中,由CD=BC?sin60°,即可求得
以上问题属网友观点,不代表本站立场,仅供参考!