如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,其中A点坐标为(-1,0),线段AB=6,,M为抛物线的顶点.(1)求抛物线的解析式;(2)求△MCB

发布时间:2020-08-05 07:07:58

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,其中A点坐标为(-1,0),线段AB=6,,M为抛物线的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积;
(3)若点D为线段BM上任一点(点D不与点B重合,可与点M重合),过点D作垂直于x轴的直线x=t,交抛物线于点E,交线段BC于点F.
①求当t为何值时,线段DE有最大值?最大值是多少?
②是否存在这样的点D,使得?若存在,求出D点的坐标;若不存在,则请说明理由.

网友回答

解:(1)∵A(-1,0),AB=6,
∴OB=5,
∴B的坐标为(5,0),
∵sin∠ABC=,
∴∠ABC=45°,
∴CO=BO=5,
∴C的坐标是(0,5),
把A、B、C代入得:,
解得:,
∴抛物线的解析式为:y=-x2+4x+5;

(2)
∵M为顶点,
∴x=-=2,
∴y=9,
∴M的坐标为(2,9),
∴S△BCM=S△MCB=S梯形COHM+S△MHB-S△OBC=(5+9)×2×+(5-2)×9×-5×5×=15;

(3)①设BM的解析式为:y=kx+b(k≠0),
将点B、点M的坐标代入可得:,
解得:,
∴y=-3x+15,
∵EF⊥AB,
∴xE=xD=t,
∴ED=-t2+4t+5-(-3t+15)=-t2+7t-10,
∴t=-=3.5,
∴ED最大=;
②设BC的解析式为:y=mx+n(m≠0),
将点B、点C的坐标代入可得:,
解得:,
∴y=-x+5,
∴ED=-t2+7t-10,FD=-2t+10,
当=时,2(-t2+7t-10)=-2t+10,
解得:t1=3,t2=5(与B重合舍去),
∴D的坐标为(3,6).
解析分析:(1)求出OB的长度,得出点B的坐标,再由sin∠ABC=,得出∠ABC=45°,CO=BO=5,从而得出点C的坐标,利用待定系数法求出抛物线解析式;
(2)过点M作MH⊥x轴于点H,根据S△MCB=S梯形COHM+S△MHB-S△OBC,即可得出△MCB的面积;
(3)①求出直线BM的解析式,点E的纵坐标减去点D的纵坐标,可得出DE关于t的表达式,求出最值即可;
②求出直线BC的解析式,表示出FD的长度,再由,可得关于t的方程,解出即可.

点评:本题考查了二次函数的综合,涉及了待定系数法求函数解析式、三角形的面积及配方法求二次函数的最值,同学们需要培养自己解答综合题的能力,将所学知识融会贯通.
以上问题属网友观点,不代表本站立场,仅供参考!