如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切与点B,连接BA并延长交⊙A于点D,交ON于点E.(1)求证:ON是⊙A的切线;(2)

发布时间:2020-08-06 03:15:36

如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切与点B,连接BA并延长交⊙A于点D,交ON于点E.
(1)求证:ON是⊙A的切线;
(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)

网友回答

(1)证明:过点A作AF⊥ON于点F,
∵⊙A与OM相切与点B,
∴AB⊥OM,
∵OC平分∠MON,
∴AF=AB=2,
∴ON是⊙A的切线;

(2)解:∵∠MON=60°,AB⊥OM,
∴∠OEB=30°,
∴AF⊥ON,
∴∠FAE=60°,
在Rt△AEF中,tan∠FAE=,
∴AF=AF?tan60°=2,
∴S阴影=S△AEF-S扇形ADF=AF?EF-×π×AF2=2-π.
解析分析:(1)首先过点A作AF⊥ON于点F,易证得AF=AB,即可得ON是⊙A的切线;
(2)由∠MON=60°,AB⊥OM,可求得AF的长,又由S阴影=S△AEF-S扇形ADF,即可求得
以上问题属网友观点,不代表本站立场,仅供参考!