如图,已知PB⊥BA,PC⊥CA,且PB=PC,D是PA上的一点,求证:BD=CD.

发布时间:2020-08-09 22:30:21

如图,已知PB⊥BA,PC⊥CA,且PB=PC,D是PA上的一点,求证:BD=CD.

网友回答

证明:∵PB⊥BA,PC⊥CA,
在Rt△PAB,Rt△PAC中,
∵PB=PC,PA=PA,
∴Rt△PAB≌Rt△PAC,
∴∠APB=∠APC,
又D是PA上一点,PD=PD,PB=PC,
∴△PBD≌△PCD,
∴BD=CD.
解析分析:先利用HL判定Rt△PAB≌Rt△PAC,得出∠APB=∠APC,再利用SAS判定△PBD≌△PCD,从而得出BD=CD.

点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
以上问题属网友观点,不代表本站立场,仅供参考!